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1. Introduction

In 1903, H. Minkowski [11] obtained the following two integral formulas
for a closed convex surface S in a Euclidean 3-space E*:

(1.1) L A + pH)V =0, L (H + pK)dV =0,

where H and K are respectively the mean curvature and the Gaussian curvature
of S at a point P whose position vector with respect to the origin 0 of E* is x,
dV is the area element of S at P, and p is the scalar product {x, e> of x and
the unit normal vector e of S at P. In 1954 C. C. Hsiung [5] extended formulas
(1.1) to a closed oriented hypersurface M™ in a Euclidean (sn 4+ 1)-space E™*!
(m > 2) and obtained characterizations of hyperspheres in E™*'. In 1956
C. C. Hsiung [6] and in 1959 G. F. Feeman and C. C. Hsiung [3] extended
Hsiung’s integral formulas to the case in which E™*! is a Riemannian space
Nm+1 of constant sectional curvature, and obtained characterizations of um-
bilical hypersurfaces in N™*!, In 1962, Y. Katsurada [7] extended the afore-
said results to a closed oriented hypersurface in N™*' by introducting an in-
finitesimal conformal vector field & to replace the position vector field x. In
1968 and 1969, Y. Katsurada, H. Ko6jy6 and T. Nagai [8], [9], [10] obtained
integral formulas for a closed oriented submanifold M™ of dimension m (> 2)
in a Riemannian n-manifold N* (n > m) of constant sectional curvature with
respect to an infinitesimal conformal vector field & and a special unit normal
vector field e of M™, and conditions for M™ to be umbilical with respect to e. -
In 1971 B. Y. Chen and K. Yano [1] studied the case in which the field e is
more general but N» is Euclidean and & is the position vector field x. The
purpose of the present paper is to extend the results of Chen and Yano to the
general case in which N* is Riemannian and £ is an infinitesimal conformal
vector field so that all known results are special cases of ours.

Communicated April 19, 1972, and, in revised form, May 28, 1976. The work of

the second author was done during his visit to Lehigh University and partially sup-
ported by the National Science Council of the Republic of China.



134 C. C, HSIUNG, JONG DIING LIU & SITANSU S. MITTRA

In §2 we first define the vector product of two tangent vectors of a
Riemannian n-manifold N* at a point P, and then discuss orthonormal frames
Pe;e; ---e; on N* at P.

§ 3 contains the fundamental definitions and formulas for a submanifold M™
of dimension m (> 2) immersed in N* (n > m). In particular, some formulas
are reduced to simpler forms when N™ is of constant sectional curvature.

Suppose that N” admits a continuous infinitesimal conformal vector field &,
and let e be a unit normal vector field over M™ parallel in the normal bundle
of M™. In § 4 we derive integral formulas for a closed oriented M™ in N*»
with respect to & and e, and in § 5 we obtain various conditions for M™ to be
umbilical with respect to e.

We wish to thank Y. Katsurada for her discussion with one of us about some
computation involving the infinitesimal conformal vector field £.

2. Vector product and orthonormal frames

Throughout this paper unless stated otherwise the ranges of indices are given
as follows:

(2'1) 1<aiyﬂ:7’""£n3
m+1<A,B,C,--+ <n, (m<n).

We shall also follow the usual tensor convention that when a letter appears in
any term as a subscript and a superscript, it is understood that this letter is
summed over its range. :

Let N* be a- Riemannian manifold of dimension n (> 3) and class C%
(x*, - - -, x*) local coordinates of a point P in N*, and a,,dx*dx? a Riemannian
metric of N”, where a,, = a;, and the matrix (a,,) is positive definite so that
the determinant |a,,| = a is positive.

Let A, -.-,A,_{ben— 1 tangent vectors of the manifold N* at the point
P, and A: the contravariant components of A4; in the local coordinate system
x, .-, x" Let A, X -+ - X A,_, denote the vector product of the n — 1 vectors
A, -+, A, ,, which is defined to be the tangent vector of the manifold M=
at P whose §-th contravariant component is (see, for instance, Feeman and
Hsiung {3])

of o ... 8
22 (A x - X Ay )t = (=Dt Gl D dadD
iaalAra;—l Ay e aanA;——li,

where &2 are the Kronecker deltas. Let T be a tangent vector of the manifold
N~ at the point P with contravariant components 7* in x', - - -, x". From the
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definition of the scalar product of any two vectors 4; and A4, namely,
2.3) (A Ay = a,,AiA5

it follows that the scalar product of the two vectors 7 and 4, X --- X A,_, is
given by

(24) <T’ Al X o« X An—1> = (__l)n—lal/z |Ta Ala . '>An—ll >

where |T, A, - -+, A,_;| is a determinant, the elements of each of whose col-
umns are the contravariant components of the vector indicated. Thus by (2.4)
it is readily seen that the vector A, X --- X A,_, is orthogonal to each of the
n—1vectors A, -+, A,_,.

Now consider an orthonormal frame Pe,- - -¢, on N* at P, where e, - - -, ¢,
form an ordered set of n mutually orthogonal unit tangent vectors of the mani-
fold N* at P so that

2.5) e, e> = azees =48, ,

where §,, are the Kronecker deltas. The position vector x of the point P is
defined to be the tangent vector of the manifold N» at the point P whose con-

travariant components are the local coordinates x?, - - -, x™ of the point P.
Let oy, - - -, @, be distinct and suppose that 1 < «a,, - -+, &, < n. Then we

can write

2.6) €, X --- Xee,  =ce, .,

where c¢ is a function of the x’s. In order to find an expression for ¢, we con-
‘sider the two matrices

(27) ¢ = (¢:9) s ‘P’ = (\V’f) s (l = .17 eyl — 1) >
where _
(2.8) ) $h = a.e, W= el,

the superscript of the element ¢} or ¢ indicating the row to which the ele-
ment belongs, and the subscript indicating the column. From (2.2) and (2.6)
" it is easily seen that '

(2'9) CeZ,. = (__‘1)7L+TBTa—1/2 H (T = 1, ft s n) s

where B7 is the determinant of the matrix of (#.— 1)th order obtained by delet-
ing the y-th column from the matrix ¢. Substitution of (2.9) in (2.5) for o =

B = a, gives
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(2.10) _ ¢ =8,
where

_ B\ —B ... (—1)»Bn.
@2.11) B= i Cuott fn
P . et

ap—1 anp—1 ap-~1

which is equal to the sum of the products of the corresponding determinants
of the (n — I)th order of the two matrices (2.7). By an elementary theorem
on determinants (see, for instance, [2, p. 102]), from (2.5) it follows immedi-
ately that '

(2.12) o - B=|¢ifi=1,
which, together with (2.10), implies that

.(2.13) c= +1.

If the orientations of e,, - - -, e, are so chosen that
(2.14) ley, »--, e, >0,

kthen by taking the scalar product of the vector e,, with each side of (2.6) and
_using (2.4), (2.13), we can easily obtain

(2.15) le, «- e, =a'?,
and therefore
(2.16) ea1 X eee X ean_1 = 5111"'a7leaﬂ ’

where §,,....,, = +1 or —1 according as the permutation of «,, - - -, @, into
1, ---,nis even or odd.

3. Immersed submanifolds

Let x: M™ — N” be an m-dimensional (2 < m <{n) submanifold of class C*
immersed in a Riemannian #-manifold N» defined in § 2. For simplicity we
shall write x(M™) as M™. Let (u!, -, u™) be local coordinates of a point P
on M™, Then :

(3-1) ‘ xa=x.a(u1,...,jum)’ . (a:‘l:"'5n)’

are of class C%, ahd ~t_he first fundamental form of M™ at P is defined to be
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G2 I = {dx, dx) = g, dutdu? ,

where d denotes the exterior differentiation, and the matrix (g;;) is positive
definite so that the determinant |g;;| = g > 0. Let x% denotes the covariant
derivative of x* with respect to g;;. Then it is known that

(3.3) L xt = oxt/out
(3.4) O gy =
The element of volume of M™ at P is given by
(3.5 : av = Vgdu' A\ - - /\ du™ ,

where A denotes the exterior multiplication.

Now we are in-a position to introduce the generalized covarlant differentia-
tion, which is useful for studying submanifolds of Riemannian manifolds. Let
Aj; be a mixed tensor of the second order in the x’s and a covariant vector in
the u’s, as indicated by the Greek and Latin indices. Then following A. W. -
Tucker [13], the generalized covariant derivative of As, with respect to the u’s
is defined by

(3.6) Vs = 0A3,Jou! + [y — T Az, — ThAS,

where the Christoffel symbols /7§, with Greek indices are formed with respect
to the a,; and the x’s as follows:

aaﬁ, n Qc_zﬁ . aa'ﬁ,> ,

(3.7 ’F" = —a“"(
@D _ i ox . 9xf  ox°

2
(a°) being the inverse matrix of (a,;), and those [, with Latin indices are
formed with respect to the g;; and the «’s in a similar way. It should be noted .
that this definition of generalized covariant differentiation can be applied to
any tensor in the u’s and the x’s, and that the generalized covariant differenti-
ation of sums and products of tensors obeys the ordinary rules. If a tensor is
one with respect to the u’s only, so that only Latin indices appear, its gener-
alized covariant derivative is the same as its covariant derivative with respect
to the u’s. Furthermore, in generalized covariant differentiation, the funda-
mental tensors a,, and 8:; can be treated as constants. Since x* is an invariant
for the transformation of #’s, its generalized covariant derivative is the same
as its covariant derivative with respect to the u’s, so that

(3.8) Vx* = x7 = ox*/ou® .

At a point P on M™ we can choose €mits ¢ vy €y Of the orthonormal frame
. Pe,- - e, on N* defined in § 2 to be unit normal vectors of M™. Then we can
have (see, for instance, [16, Chapter X])
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(3.9) Vix.j = ; .QAm-eA >
. (3.10) ’ ‘QA]ij = <ij,i, e,4> )
(3.11) Viei= — 82 4yik gij,j + ; Ypaii€n s

where (g*7) is the inverse matrix of (g; ), and
(3.12) QA]‘L‘J' = QA;ji »
(3.13) Sapis + 9pai =0,

éo that 944, = 0. Thus being defined to be —{dx, de,> the second funda-
mental form /I, of M™ with respect to e, is given by

G.14) I1, = 04, dutdu’ .

The equations of Gauss and Mainardi-Codazzi of M™ in N™ are (see, for
instance, [2, p. 16_2])

(3.15) Ry = ; Rap1R4105 — LaniLaiin) + Ra,a;axfnx,sixfjxfk >

' ‘QCI‘L'j,k - Qcmc,j = Z (930|k931i1 - 1930”93[”)
(3.16) 5 _
F Rosrs€eXiX X0

where the Riemann symbols R,;;; = g£,.R';;; for M™ formed with respect to
the g,; and the u’s are defined by -
oIy, 'y

3.17 R, =9l
( ) 7 au* au’.

+ I3l — Tl

and the Riemann symbols R,,,; for N* formed with respect to the a,; and the
x’s can be similarly defined. _

In particular, if the manifold N” is of constant sectional curvature C; from
the definition it follows that

(3.18) C R = C(amsaﬁ;- - aaraﬁﬁ) >

and therefore (3.15),(3.16) are reduced, in consequence of (3.4), to
(3.19) Ry = ; (QAlthAuj — 2458.4000) + C8rr8si; — 8ri8k) >
(3.20) ‘QCIij,k - Qcmc,j = ;;‘ ("930]k93|ij - BBCijQBHZk) .

Moreover, by using (3.11), (3.9), (3.20) we can easily obtain
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dzeA = d(VieAdui)

(3.21) , ' . ‘
= ; (VZBBA]Z' — 41:251,8" + ; "9(,'A|i"9BC|l)eBdul Adut .
The principal curvature of M™ at P with respect to a normal vector e 4
(m + 1 < A < n) are the eigenvalues k,(e,), - - -, k,(e,) of the matrix (£ 4,,)
relative to the matrix (g,;), i.e., the roots of the determinant equation

(3.22) | det (2455 — 28:) =0

in 2, and the rth mean curvature of M™ at P with respect to e, is defined to
be the rth elementary symmetric function of k,(e,), - - -, k(e divided by the
number of terms, i.e., '

(T)KT(%) = 0 k) ke s

(3.23)
I<r<mm+1<A4<n),

where (’:’) =m!/@!(m —r)!). For convenience, we assume that Ky(e,) =

=1 . .

P e M™ is called an umbilical point of M™ with respect to e, if k,(e,) =
oo = ky(ey) at P, and M™ is called an umbilical submanifold of N* with
respect to a vector field ¢, if every point of M™ is an umbilical point with re-
spect to e, at that point. It is well known that a closed oriented hypersurface
in a Euclidean space E™*! consisting entirely of umbilical points with respect
to the unique normal vector field is a hypersphere.

If k, is a real simple root of (3.22), then

(3.24) (Payis — ka8l =0, (G=1,---,m),

define, to within a factor, m quantities p,|*, i = 1, - - -, m, which are the con-
travariant components of a real vector in the tangent space of M™ at P, called
a principal vector of M™ at P corresponding to the principal curvature k,, as
is seen by changing the coordinates and making use of the tensor properties
of 2,,,; and g;;. If k, is another real simple root of (3.22), we have a second
vector p,|* defined by

(3.25) Qa5 — kbgij)pbli =0, g=1.--,m.

- Multiplying (3.24) by p,|! and (3.25) by p.}’, summing for j in each case and
subtracting, we have, since k, # k, by hypothesis,

(3.26) gisPal Dol =0,
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that is, the two vectors p,|* and p, )’ are orthogonal. Hence, as is well known,
-the m principal vectors p\|, -+ -, p, |t corresponding to the m principal curva-
tures ki, -~ -, k, With respect to the unit normal vector e, of M™ at P are
mutually orthogonal. ’

Lemma 3.1. By a suitable choice of the local coordmates u, - <+, u™ of
M™ at a pomt P we have ,

(3.27) VieA :y—kix,i + > 9545, (i=1,.-.,m, not summed) ,
B .

where ky, - -+, Ky, are the principal curvatures-of M™ at P with respect to e .
Proof.  Choose the local coordinates u', - - -, u™ of M™ at'P such that x ,
x,, to be the m principal vectors p, [, - - -, p,,[f of M™ at P correspond-
ingto ky, - - -, ku, so that g,; = O for i # j at P. The contravariant components

x2, and p,|* of the principal vector pal in the x’s and the u’s respectively are
connected by the relation -

(3.28) - X%, = Xpal’ -

Multiplying (3.28) by a,,x?, and summing for « we obtam 8a» = gpiDe|* from
which it follows that

(3.29) =4
Substituting (3.29) in (3.24) gives
(3 30) ‘QAIij = kﬁgﬁj ) (i == 1 L m not Sumlned) .

From (3.30) and (3.11) follows 1mmed1ately (3 27) q.e.d.
Let £ be an infinitésimal conformal vector field on the manifold N*, and L
_ the Lie derivative with respect to €. Then on N* we have

(3.31) Ly =, + £, =204, ,

where p is a function of x!, ..., x". The field & is said to be homethetic or
-isometric according as p is constant or zero.

Lemma 3.2.  If the local coordinates x', - - -, x® on N* are so chosen that
the Kronecker vector 8,, whose contravariant components are the Kronecker
deltas 8, - - -, 6%, generate an infinitesimal conformal vector field on N*, then
on N* '

(3.32) L, a,, = 2pa,, = 0a,,/0x" .

Proof. From the definition of cavariant differentiation with respect to the
x’s it follows that

(3.33) _ Oap = @0, = ol
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and similarly d,, , = a,/"7,. By means of (3. 7) we readﬂy have a,, [}, + a, 1",
= oa,;/0x", which together with (3.31) gives (3.32). q.e.d.

* If the vector §, generates an infinitesimal conformal vector ﬁeld on N”, then
using (3.33) we immediately obtam that on N

(3.34) d(83) = & dx' = &% ¥, dut = Taxldut

which together with (3.7) implies

0a,, "_29ar,;_8t1l . '
(39 agdn= (S e Sl

4. Integral formulas

Let x: M™ — N* be an m-dimensional (2 < m < n) submanifold of class.
C® immersed in a Riemannian #-manifold N*, which is of constant sectional
curvature and admits a continuous infinitesimal conformal vector field &, so
that §§2 and 3 can be applied. In this section we shall derive some integral
formulas for closed oriented M™ with respect to a fixed unit normal vector field,
en.1 say, on M™. For this purpose we choose the orientation of the ortho-
normal frame Pe, - - - e, of N* at a point P defined in § 3 such that (2.14) and

therefore (2.15) hold, and we also choose the local coordinates x', - - -, x" and
ut, .-.,u™ of N* and M™ at P respectively such that the Kronecker vector g,
be the infinitesimal conformal vector &, and that x ,, - - -, x ,, be the m principal,
vectors p, % - - -, pn|t of M™ at P with respect to e,,,,, so that at P
(4-1) . gij=03 (i#:j)s

@42 e;=x,lll, G=1,---,m),
where . k
4.3) [ = vz .

Now we are in a posmon to evaluate the followmg exact differential m-form
for1 <i<m:

dWal|d,dx, -, dx,dey,), - ydlm ity mir, s )
. m— i -1
4.4 =0 + (=D™*¢ - DAD + ( 1)"‘_1(111)

(= D)mAV) 4 (=D (V).

a=3

where we have used &x = 0 and put
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(45) (I) = 1/21[6151, dxa '”‘ ) dx’ dem+1’ M) dem+1’.e'm.+l' 1 €al

(46) (II) = \/E|51’ dx’ MR dx: dzem+1’ de'm.-(.-l’ ft de'm.+1’. em+1’ RPN 78 B
- e S ey e

. om—1 i-2
(4'7) (III) = 1/5 lali.dx’ Tty dx’ de‘m,+l’ MR} de‘m,+1’ em+2’ D] en| )

(IV) = \/‘_1 Ial’ dx’ ) dx’ dem+1’ MR dem+1’ em+1’ dem-(.-z’
(48) m—1i ill

€miz enl >

V), = va|d,dx, - <+, dx,dep |, > dey .1,
4.9 ms P :
. Cmi1>€maezs i dem+a’ c ‘aen.l ’ (3 <ag<n—m.

By means of (3,27) for 4 = m + 1, (4.2), (4.3), (2.4), (2.3), (2.16), (3.35),
(3.32),(3.4), (3.5), (4.1) we obtain

@D = (_1)t—l¢5|d51, [fl]ejlduh, - [jm'_i]ejm_idufm'_i ,
kjhz—-t+1[j7r.b—i+l]ejv'u—iﬂduj-m—‘ﬂ’

Tttty kjm_l[j:m,—i]ej,,._ldujm—la em+1a DR} en[

(D)™ — DG — 1)l a,,dss A E?fw]- G« Timod]

Bipriinkiniir o kg AU N e A dwd

= (= )m = DY — D! Aoy [ - Timoies,
(4.10) X oo Xeg,  Xe, X X ey

ke ke dutt A e A duinet
= o= e D G a B

Bgptnkns s o+ kg A A dutt A e A dutnr
=(=D"pm — D! —-D!m—i+ 1)

Y kg, kydV

Jm—t+1s s Jm—

Jm—1

x%, x2.

2Im™ s Jm

It should be remarked-that in the summation on j,, - - -, j,, in (4.10) for fixed
Jm—te1> == *sJim_1, M — i other j’s are together and their order is immaterial,
and the remaining j can take any one of the other (m — i 4+ 1) j’s, namely,
Jis ** *5 fm—s> Im» SO that we get the factor m — i 4+ 1. From (4.10) and (3.23)
follows immediately
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4.11) @ = (= 1) m! pKs_(en,)dV -

Substituting (3.21) for 4 = m + 1 in (4.6) gives readily
(4;125 (D =0.
Using the same method as above we can easily obtain
4.13) (D) = (=)™ m! Gy, ey DK ien,DdV

414 AV) = (=D™m — DLE — D! B enyr).
| DY FRPURERY FN S L

Fm—i+2s0e2dm
‘The vector field 4, can be decomposed into two parts:
(4 15) - o ‘ ’ 51 = 51[: + 51171. s

where 4,, is tangent to Mm and §,, normal to M™. Let ¢ and € be two umt
normal vector fields over M™ coplanar with d,,. Then

4.16) . By = By €€ + (i D

Now suppose that the unit normal vector field ¢, , is parallel in the normal
bundle of M™, i.e., by the definition, de,,,, is tangent to M™ everywhere.
- ‘Then by choosing e,,,, = e and e,,,, = & everywhere on M™ and using (4.15)

- and (4.16) we obtain ’

@17 Open> =0, (@=3,:,n—m),

and therefore

4.18 M.=0, BLa<n—m.
Combination of 4.4),(4.11),.- - -, (4.14), (4.18) gives
dWa|d,dx, - dx,dey, s -, dey, ., emH, . -,en|)
R e T
@19 o (Cem ok, O €nsd + Fiew )V ,
(1 =1, m) .
where

—DIGE =D ’ c
F’;(e""'.*'l) = (m -l). $l D! 0 e,m+2> . Z . kjm—i+1 .
(420) - : m: . . Jm—_i+l,j":.7m.—1

TN PPN L

Integrating (4.19) over an onented M™ and applymg Stokes’ theorem we
hence arrive at ‘
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Theorem 4.1. Let x: M™ — N" be a closed oriented m-dimensional
(2 < m < n) submanifold of class C* immersed in a Riemannian n-manifold N*,
which is of constant sectional curvature and admits a continuous infinitesimal
conformal vector field &. If e, ., and e, ., are unit normal vector fields over
M™ such that e,,., is parallel in the normal bundle of M™, and e, ,, €., are
coplanar with the normal component of &, then

[K: (emo) + By e PKilen DAV = = [ Filen. DV .

(i=1,"'sm)a

4.21) J sm

where p is given by (3.32).

Remarks, 1. If n —m =1, then F,le,,,) =0, i=1,.-.,m, hold
automatically, and formulas (4.21) are due to Hsiung [5] for Euclidean N*
with & generated by the position vector x of a general point of M™ with re-
spect to a fixed point O in N*, due to Hsiung [6] and Feeman and Hsiung [3]
for a Riemannian N* and a special &, and due to Katsurada [7] for a Riemannian
N and a general &.

2. For Euclidean N* and general n with the position vector field x as &,
formulas (4.21) are due to Chen and Yano [1], and due to Yano [14], [15]
under some additional conditions. _

3. For Euclidean N*, the condition of the parallelism of e, ., in the nor-
mal bundle of M™ can be replaced by the condition that M™ be immersed in
a hypersphere of N® centered at the origin of N™.

4. For a special e,,,, formulas (4.21) are due to Katsurada and Kojyo
[13], and Katsurada [8].

5. Characterizations of umbilical submanifolds

In this section we use integral formula (4.21) to derive various conditions
for a submanifold of a Riemannian manifold to be umbilical with respect to a
given normal vector field. For this purpose we first state the following three
lemmas which will be needed for the proofs of our main theorems. The proofs
of the lemmas are omitted here, but can be found in [4, pp. 52, 104-105].

Lemma 5.1. Let K (e,),i =1, .-, m, be given by (3.23). Then

(51) I<i(eA)2 - Ki—l(eA)Ki+1(eA) > 0 > (l = 17 e, — 1) s

where the equality implies that k(e,) = - - km(e 4
Lemma 5.2. If Ki(e), K;.((es), -+, K;_;_,(e)> 0,1 <j<i<m, then

(5.2) K, _i(es) > K, _s(e4) > 0> Ki_ji(es)
K (el K, (e Ki—j(eA)

»
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where the equality at any stage implies that kj(e)) =.--- = km(e N
‘Lemma 5.3. If K((ey),---,K;(ep) > 0,j < m, then

(5.3 Ki(e)) > Ki(e )" > K(e )" > -+ > K (e,
where the equality at any stage implies that k(e,) = -+ = k,(e,).

In the remainder of this section we shall use the following notation :

N®: A Riemannian n-manifold (» > 2) having constant sectional curvature
and admitting a continuous infinitesimal conformal vector field & so
that L.a,, = 2pa,, where a,; is the Riemannian metric tensor of N™.

M™: A closed oriented m-dimensional (n > m > 2) submanifold of class C*
immersed in N*, _

e: A unit normal vector field on M™ parallel in the normal bundle of M=,
ki, K., F,, and p: k,(e),K(e),Fie) fori=1,-. ,m, and (&, e>, respec-

tively. ’

Theorem 5.1. M™ is umbilical with respect to e if at all points of M’" for
an integer or i, 1 € i < m, :

(i) p/K, >0, _

(i) p< —pK;_,/K, (or p > —pK;_,/K)),

Gi) F,=F,,,=0forl<i<m,and F;,=F,_ =0 fori=m.

For Euclidean N* with the position vector field x as £, Theorem 5.1 is due
to Hsiung [5] for n = m + 1 and due to Chen and Yano [1] for general n
and 2 <{ < m. For Riemannian N* w1th a special e and i = 1, Theorem 5.1
is due to Katsurada [8].

Proof. By (i), the integrand of (4. 21) for ems1 =€ is “either nonpositive
or nonnegative, and therefore we have :

54  p=rKiu/Ki .

For i<m, substituting (5.4).in (4.21), where i is replaced by i + 1, gives

(5.5) — Ky KiddV =0

Hm K
Due to (i) and (5.1), the integrand of (5.5) is nonnegative, and therefore (5.5)
holds only when, at all points of M™, K, — K,;_,K;,, = 0. From Lemma 5.1

“it follows that k; = ... =k, at all points of M™, and hence M™ is umbilical
with respect to e.

For i = m, substituting (5.4) in (4.21) where i is replaced by i — 1, we
obtain-

(5.6) - f o I.(Q_(Km_lz —K,_K,)dV =0 .
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By applying Lemma 5.1 with the same argument as above, we can show that
M™ is also umbilical with respect to e. :

Theorem 5.2. M™ is umbilical with respect to e if at all points of Mr for
an integer i, 1 <i < m,

(1) 0 Kz‘+1’ Ki’ Ki—l > 0’

() p> —pK; /K,

(ii) F,,,=0.

For Euclidean N* with the position vector field x as &, Theorem 5.2 is due
to Chen and Yano [1]. It should be remarked that we may have a similar
theorem by assuming p < O instead of p > 0.

Proof. By (ii) and Lemma 5.2 we have

(5.7 p > —pK; /Ky > —pK; /K,y

(4.21), with i replaced by i + 1, and (5.7) imply that the equality holds in
(5.7), and hence M™ is umbilical with respect to ¢ by Lemma 5.2."

Theorem 5.3. M™ is umbilical with respect to e if at all pomts of M™ for
an integer s, 1 < s < m,

(i) pis of the same sign,

(i) K;>0,i=1,---,s,

(iii) K, is constant,

(iv) p is of the same sign, .

(v) Fi=F,,=0forl <s<m, and F, = F, = 0 for s = m.

For Euclidean N™ and n = m + 1, Theorem 5.3 is due to Hsiung [5].

Proof. €Case 1. s<m. By (ii) and inequality (5.1)fori =1, ...,s we
obtain .

KI/KU 2 KZ/KI 2 cre 2 Ks+1/Ks H
and, in particular, '
(5.8 KK, > K.,

where the equality holds only when k, = --. =k, in view of Lemma 5.1.
Here we assume p > 0. Then from (4.21) for { = 1 and assumptions (i), (ii),
(v) it follows that p is negative. (For the case p <0, the arguments in the proof
of our theorem will be exactly the same, except that p would be positive.)
Multiplying both sides of inequality (5.8) by p, integrating over M™, and ap-
plying (4.21) for i = 1 and i = s 4 1, we can readily obtain, in consequence
of (iii) and (v), :

— I oK.V — f pK.K,dV < J pK,, dV = — I pK.dV
Mm Mm Mm Mm

-from which it follows that
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(5.9) : v; p(KK, — Ky, )dV = 0.

Since p is negative, from (5.8) We see that the integrand in (5.9) is nonpositive

and therefore must be zero. Thus the equality holds in (5.8) so that k, = - ..

= k,, everywhere by Lemma 5.1. Hence M™ is umbilical with respect to e.
Case 2. s = m. From (i), (iii) and Lemma 5.3 it follows that

(5.10) K, >KM> .- 2K, Y™ > K Un=c,

where ¢ i$ a positive constant. By means of (4.21) for i = m, assumption (v)
and inequalities (5.10), we obtain

(5.11) I pKpdV = — [ oKpodvV < —cmt [ paV .

M Mm™

On the other hand, using (4. 21) fori =1, (v), (5 10) and the fact that p < 0,
we have

pK,dv = [ pemav = c’"‘l-[ K ndV
Mm Mm : Mm :

> cm—lj;m pKdV = —cnt [ pav .

Mm

(5.12)

Combination of (5.11) and (5.12) shows immediately that the equality holds
in (5.12) and therefore that

(5.13) j p(K, ™ — K)dV =0 . .
L Mm

Since p < 0, {5.10) implies -that the integrand of (5.13) is nonnegative and
therefore that K, = K,,/™. Thus by Lemma 5.3, k, = --. = k,, at all points
~of M™. Hence the proof of Theorem 5.3 is complete.
- Theorem 5.4. M™ is umbilical with respect to e if at all points of M™ for
two integers i and s,i < i < s < m, :
(l) Ki,Ki+1," K >O
(il) K;= 22 1c]K], for some constants ¢ >0,i<j<s~—1,
(ill) p is of the same sign, '
(iv F;=0,j=1,--.,5s—1.
Proof. We observe

(5.14 .
( ) K, K;

K; K,,_ K, (K . _K; 1) E
K, K., . K, , '

In view of Lemma 5.2, the right side of (5.14) is nonnegatlve fori<j<s—1.
Thus - , .
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(515) Kj/Ks 2 Kj—l/Ks—l H
where the equality holds only when k, = .- = k,. By (ii) and (5.15) we
obtain

s=1 s=1
1= Z.chj/Ks = Z chj—l/Ks—l H
Jj=? J=1

or
5.16) K= ScK, >0,
i=t
where the equality holds only when k, = - .- = k,,. Thus by means of (4.21),

(iv) and (ii) we obtain
§=1 ' s—-1
(5.17) j p(&,_1 % chj_l>dV =— j p (Ks S c,.K,.>dV =0.
Mm =1 Mmn i=i

(5.16), (5.17), (iii) show immediately that the equality holds in (5.16). Hence
M™ is umbilical with respect to e.

Theorem 5.5.  M™ is umbilical with respect to e if at all points of M™ for
two integers i and 5, 0 < i < s < m,

(1) Ki"",Ks+1>0’

(i) K, = X352 c,K,,-for some constants ¢; > 0,i < j< s — 1,

(iii) p is of the same sign,

vy F;,=0,j=1,.--.,5s— 1.

Proof. By Lemma 5.2 we have

(5.18) K K K (K“' — Km) <0,
KS Ks+1 Ks+1 Ks Kj -

where the equality holds only when &, = ... k,. From (ii), (5.18) it follows
that

» s—l. s—1 .
1= Z chj/Ks S Z chj+1/Ks+1 H
ij=3 i=t
or
(5.19) Ko — 5S¢k, <0,
i=t

where the equality holds only when &, = - .. = k,. Thus by means of (4.21),
(iv) and (ii) we obtain
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(5.20) L{mp( . z; c,K,H)dV - —f (K = z; c,K,)dV ~0.

(5.19), (5.20), (iii) show unmedlately that the equality holds in (5.19). Hence
Mm™ is umbilical with respect to e. ‘ '
" Theorem 5.6, M™ is umbilical with respect to e if at all points of M™ for
an integer i, 1 <i < m,

(i) K;>0,

(i1) K, = cK;_,, for some constant c,

(iii) p is of the same sign,

(v) F;y=F,=0.

Proof. Due to (i), ¢ cannot be zero and K;_, must be of a fixed sign. Using
(ii) and Lemma 5.1 we have

KoK, — K, ) =K, ' —KK,,>0,

so that

(5.21) ‘ K, ,—cK,, is of fixed sign ,
and vaﬁishes identically only when k;, = - -. = k,. Thus by means of (4.21),

(iv) and (ii) we obtain
(5.22) f oK — Ky )dV = — f p(K, — cK; pdV = 0.
Mm X Mm

(5.21), (5.22), (iii) imply immediately that K, | = ¢K,_,. Hence Theorem 5.6
. is proved.
Corollary 5.6. M™ is umbilical wzth respect to e if at all points of M™
(i) K,>0, :
(i) X7, (1/k) = constant,
(iii) p is of the same sign,
Givv F,,=F,=0.
Proof. By (ii) and the definition (3. 23) of K, we obtam

mK,, /K, = }] (1/k;) = constant ,

f=]
so that
) Ky =cKn_;, for some constant ¢ .
Heﬁce Corollary 5.6 is an immediate consequence of Theorem 5.6 for i = m.
Theorem 5.7. M™ is umbilical with respect to e if at all points for an

integer s, 1 < s < m, and a constant ¢
(i) K, >O0fori=1,-.-,s,
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(i) K, ,V¢P > c > K5,

(iii) p is of the same sign,

(iv) p is of the same sign,

(v) F,=F,=F,=0. _

Proof. As in the proof of Theorem 5.3 we may assume p > 0. Then due
to (i), (v) and (i) for i = 1, (4.21) for i = 1 implies p < 0. By (5.3), (i) we
have K, > K, ,Y¢~V > ¢, and therefore, in consequence of (ii), (4.21) for
i=sandi = 1,

—j KV > — f cpdv > — [ pKav
um

Mm Mn®

(5.23) =f oKodV > | pcsm1av
Mm

Hm

= — f ¢ 'pKdv .
, Mm
Thus the equality holds everywhere in (5.23), so that
f p(K, — c)av = 0.,
Mm

which implies that K, = ¢. Hence, by Theorem 5.3 for s = 1, M™ is umbilical
with respect to e. o

Theorem 5.8. M™ is umbilical with respect to e if at all points of M™ for
an integer s, 1 < s < m, and a constant ¢

(i) K., K, >0,

(i) K,_,/K;>c>K. /K,

(iii) p is of the same sign,

(iv) p is of the same sign,

(V) Fs—les:()'

Proof. As before we may assume p > 0. Then due to (i), (iii) and (v),
(4.21)-implies p < 0. By using (ii), (4.21) for i = s — 1 and i =5 we have

j oKy dV = — j pK,_ dV > — j cpK AV
(5.24) ol o M
- = f oK,y > j oKo,dV .
Mm . Mm

Thus the equality holds everywhere in (5.24), so that
(5.25) | f p(K,_, — cK)dV =0 .
i : Mm .

Since p(K,_; — cK;) < 0, (5.25) implies that K, , = cK, at all points of M™,
Hence, by Theorem 5.6 for i = s, M™ is umbilical with respect to e.
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Theorems 5.4, 5.5, 5.6 and Corollary 5.6 are due to Chen and Yano [1] for
Euclidean N* with the position vector field x as &. Theorems 5.4, -- -, 5.8 are
due to Strong [12] for n = m 4 1 with the position vector field x as &.
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